Frequency-domain diagonal extension imaging
نویسندگان
چکیده
منابع مشابه
High-speed optical frequency-domain imaging.
We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of -110 dB w...
متن کاملPhase-resolved optical frequency domain imaging.
Phase-resolved Doppler optical coherence tomography has been used to image blood flow dynamics in various tissues using both time-domain and spectral-domain optical coherence tomography techniques. In this manuscript, we present phase-resolved Doppler imaging with a high-speed optical frequency domain imaging system. We demonstrate that by correcting for spurious timing-induced phase errors, ex...
متن کاملOptimal Extension Field Inversion in the Frequency Domain
In this paper, we propose an adaptation of the Itoh-Tsujii algorithm to the frequency domain for efficient inversion in a class of Optimal Extension Fields. To the best of our knowledge, this is the first time a frequency domain finite field inversion algorithm is proposed for elliptic curve cryptography. We believe the proposed algorithm would be well suited especially for efficient low-power ...
متن کاملImaging scattering orientation with spatial frequency domain imaging.
Optical imaging techniques based on multiple light scattering generally have poor sensitivity to the orientation and direction of microscopic light scattering structures. In order to address this limitation, we introduce a spatial frequency domain method for imaging contrast from oriented scattering structures by measuring the angular-dependence of structured light reflectance. The measurement ...
متن کاملQuantitative Non-diagonal Regulator Design for Uncertain Multivariable System with Hard Time-domain Constraints
In this paper a non-diagonal regulator, based on the QFT method, is synthesized for an uncertain MIMO plant whose output and control signals are subjected to hard time-domain constraints. This procedure includes the design of a non-diagonal pre-controller based on a new simple approach, followed by the sequential design of a diagonal QFT controller. We present a new formulation for the latter s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Photonics
سال: 2020
ISSN: 2577-5421
DOI: 10.1117/1.ap.2.3.036005